Outside Options in the Labor Market

Sydnee Caldwell (UC Berkeley) and Oren Danieli (Tel Aviv University)

Fall 2022

 シックの
 ゴ目
 イヨ・ イヨ・ イヨ・
 日

1

Motivation

In standard models of the labor market workers' wages depend on (typically unobserved) outside options

- ▶ Perfect competition: equally attractive option always exists $\implies w = MP$
- ▶ Reality: next best option could vary in location, skill requirements, etc.

Outside job opportunities could vary across workers

- Could generate lower wages even for equally productive workers
- Ex: Women may have fewer options on average if they are less willing or able to commute

Challenge: Outside options are typically unobserved

This Paper

Develop a method to estimate workers' outside employment opportunities

- Adapt standard marriage market models for use in the labor market (Becker 1973, Shapley-Shubik 1971)
- From this model, derive a sufficient statistic for outside options: Outside Options Index (OOI)
- "Concentration" index: learn about outside options from equilibrium outcomes of similar workers

Apply this model to German linked employer-employee data

- 1. Estimate empirical link between OOI and wage using a standard shift-share instrument
 - ▶ 10% more options \implies 1.7% higher wages
- 2. 20% of gender gap is driven by differences in OOI (all coming from distance)

Related Literature

1. Matching Models With Transfers

Shapely & Shubik (1971), Becker (1973), Ekeland, Heckman & Nesheim (2004), Choo & Siow (2006), Dupuy & Galichon (2014)

2. Labor Market Imperfections and Wage Gaps

Robinson (1933), Black (1995), Manning (2003), Ransom & Oaxaca (2010), Hirsch et al. (2010), Beaudry, Green & Sand (2012), Hsieh et al. (2013), Bidner & Sand (2016), Card, Cardoso & Kline (2016), Card, Cardoso, Heining & Kline (2018), Lamadon, Mogstad & Setzler (2019)

3. Definition of a Labor Market

Manning & Petrongolo (2017), Nimczik (2018)

4. Labor Market Concentration

Handwerker & Spletzer (2015), Marinescu et al. (2018), Benmelech et al. (2018), Berger et al. (2019), Jarosch, Nimczik & Sorkin (2019), Berger, Herkenhoff & Mongey (2020), Schubert, Stansbury & Taska (2020)

Theory

Empirical Setting and Data

Heterogeneity in Outside Options

Outside Options and Wage Inequality

(ロ) (部) (E) (E) (E) (の) (A)

Matching Model with Two-Sided Heterogeneity

Continuum of workers of mass $\mathscr{I} = 1$ and one-job firms of mass $\mathscr{J} = 1$

If matched to firm *j*, worker *i* produces

Wages are used to transfer utility

Equilibrium

Solve as a cooperative game (Shapley Shubik 1971)

- Static framework
- Perfect information

Equilibrium consists of an allocation M and transfer w_{ij} for each $(i, j) \in M$ which satisfies Details

$$\forall i' \in \mathcal{I}, j' \in \mathcal{J} \quad : \quad \omega_{i',m(i')} + \pi_{m^{-1}(j'),j'} \ge \tau_{i'j'} \tag{1}$$

- Workers must earn more than they could elsewhere
- Firms must earn more than they could by hiring a different worker
- Compensation depends on distributions of productivity (y) and preferences (a)

Functional Form Assumptions

- 1. Workers and jobs can be characterized by characteristics $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ and $\mathcal{Z} \subseteq \mathbb{R}^{d_z}$
 - Notation: worker i has characteristics X_i (density: d(X_i)) & firm j has characteristics Z_j (density: g(Z_j))

Functional Form Assumptions

- 1. Workers and jobs can be characterized by characteristics $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ and $\mathcal{Z} \subseteq \mathbb{R}^{d_z}$
 - Notation: worker i has characteristics X_i (density: d(X_i)) & firm j has characteristics Z_j (density: g(Z_j))
- 2. Allow for idiosyncratic preferences (Choo & Siow, 2006, Dupuy & Galichon, 2014)

$$\tau_{ij} = \tau(x_i, z_j) + \epsilon_{i, z_j} + \varepsilon_{j, x_i}$$

- 2.1 $\varepsilon \sim$ come from continuous logit models with scale α_x, α_z Details
 - Allows us to account for continuous observed characteristics (e.g. distance)
 - \blacktriangleright Similar to standard MNL logit but $\omega
 eq \infty$ as (Cosslett 1988; Dagsvik 1994)

2.2 $\varepsilon_{i,z_j} \perp \varepsilon_{j,x_i}$

Rules out interactions between worker/firm preferences

Functional Form Assumptions

- 1. Workers and jobs can be characterized by characteristics $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ and $\mathcal{Z} \subseteq \mathbb{R}^{d_z}$
 - Notation: worker i has characteristics X_i (density: d(X_i)) & firm j has characteristics Z_j (density: g(Z_j))
- 2. Allow for idiosyncratic preferences (Choo & Siow, 2006, Dupuy & Galichon, 2014)

$$\tau_{ij} = \tau(x_i, z_j) + \epsilon_{i, z_j} + \varepsilon_{j, x_j}$$

- 2.1 $\varepsilon \sim$ come from continuous logit models with scale α_x, α_z Details
 - Allows us to account for continuous observed characteristics (e.g. distance)
 - Similar to standard MNL logit but $\omega
 eq \infty$ as (Cosslett 1988; Dagsvik 1994)

2.2 $\varepsilon_{i,z_j} \perp \varepsilon_{j,x_i}$

Rules out interactions between worker/firm preferences

IIA: Unobserved taste for jobs in an neighborhood of z uncorrelated with unobserved taste for jobs in a neighborhood of $z' \neq z$

Outside Options and Compensation

In equilibrium [Proofs in Appendix A.5]:

1. Workers (employers) get "their" ε_{i,z_j} (ε_{j,x_i})

$$\omega_{ij} = \omega(x_i, z_j) + \epsilon_{i, z_j}, \ \pi_{ij} = \pi(x_i, z_j) + \varepsilon_{j, x_i}$$

2. The systematic portion of workers' compensation satisfies

$$\omega(x,z) = \frac{\alpha_x}{\alpha_x + \alpha_z} \left(\underbrace{\underbrace{E\left[\omega|x_i\right]}}_{\text{Expected Compensation}} \right) + \frac{\alpha_z}{\alpha_x + \alpha_z} \left(\underbrace{\tau\left(x,z\right) - E\left[\pi|z\right]}_{\text{firm "rents"}} \right)$$

Note: $\frac{\alpha_z}{\alpha_x+\alpha_z}$ is larger when workers' idiosyncratic preferences are more variable than firms'

Outside Options and Compensation

We can also decompose worker *i*'s expected equilibrium compensation:

 Assuming firm profits stay constant, the OOI is a sufficient statistic for the effect of outside options on wages [Appendix A.3]

Definition of Outside Options Index (OOI)

OOI is $E[\varepsilon_{i,z^*}|x_i]$ de-scaled

$$OOI_{i} = \alpha_{z}^{-1} E\left[\varepsilon_{i,z^{*}}|x_{i}\right] = -\int f_{Z|X}\left(z_{j}|x_{i}\right) \log \frac{f_{Z|X}\left(z_{j}|x_{i}\right)}{g\left(z_{j}\right)}$$

Expected equilibrium value of ϵ_{i,z_i} for workers with characteristics x_i

Concentration index that depends on both discrete and continuous characteristics

- > Varies across workers due to differences in both preferences and skill (captured in x_i)
- May vary across workers with identical x_i due to labor market conditions (available z_j)
- Nests transition-based measures (use discrete X_i, Z_j based on industry/occupation)

An Aside on Size-Based Market Power

Recent interest in the role of size-based monopsony power in determining wage mark-downs

In the paper [Appendix A.5] we present an extended model that allows for

- endogenous entry
- firms with multiple jobs

Key results:

- One-job case remains the upper bound for wages; a lower bound is set by assuming firms do not compete with themselves
- The expected difference in these bounds depends on how jobs are distributed across firms

$$E\left[\overline{\omega_{ij}}-\underline{\omega_{ij}}
ight]=-\sum_k \log\left(1-p_{k,i}
ight)$$

Estimation: Assumptions

$$OOI_i = -\int_j f_j^i \log f_j^i$$

• where f_i^i is the probability that *i* works in job *j*.

Estimation: Assumptions

$$OOI_i = -\int_j f_j^i \log f_j^j$$

▶ where fⁱ_j is the probability that *i* works in job *j*.
 Assumption: Parameterization (Dupuy & Galichon, 2014)

$$\log \frac{f_{Z|X}\left(z_{j}|x_{i}\right)}{g\left(z_{j}\right)} = x_{i}Az_{j} + a\left(x_{i}\right) + b\left(z_{j}\right)$$

where $a(X_i), b(Z_j)$ fix the marginal distributions

OOI is an index of concentration

- Estimated using cross-sectional distribution of similar workers
- On all observable dimensions
- Common index for unpredictability

Estimating OOI

1. Simulate observations from $f(X_i) f(Z_j)$ and define

$$Y = egin{cases} 1 & {\it Real Match} \ 0 & {\it Simulated Match} \end{cases}$$

2. Estimate a Logit model to recover f_i^i

$$\log \frac{P(Y = 1 | X = x, Z = z)}{P(Y = 0 | X = x, Z = z)} = xAz + a(x) + b(z)$$
$$= \frac{f(x_i, z_j | Y = 1)}{f(x_i, z_j | Y = 0)} \frac{P(Y = 0)}{P(Y = 1)}$$
$$= \frac{f(x_i, z_j)}{f(x_i) f(z_i)} = f_j^i \cdot c$$

3. Calculate \hat{f}_{i}^{i} for every possible worker-job combination and plug in

$$\widehat{OOI_i} = \sum_j \widehat{f_j^i} \log \widehat{f_j^i}$$

Theory

Empirical Setting and Data

Heterogeneity in Outside Options

Outside Options and Wage Inequality

Application: Germany

LIAB Longitudinal

- ~1% German workforce
- Cross-section: employed on 06/30/2014
- Focus on workers between 25 & 55
- Supplement with task data from BIBB (~German O*Net)
- Exploit linked establishment surveys

Descriptive Statistics

	All]	Male	F	Female	
	Mean	SD	Mean	SD	Mean	SD	
	(1)	(2)	(3)	(4)	(5)	(6)	
Workers							
Age	46.32	(11.64)	45.89	11.87	46.82	11.34	
Female	46%	(0.50)	0%		1.00		
German Citizen	98%	(0.14)	98%	0.16	0.99	(0.12)	
Higher Secondary Degree	28%	(0.20)	27%	(0.20)	29%	(0.20)	
Intermediate Secondary Degree	31%	(0.21)	27%	(0.20)	34%	(0.23)	
Lower Secondary Degree	19%	(0.16)	19%	(0.15)	21%	(0.16)	
Intermediate/Lower Education	22%	(0.17)	27%	(0.20)	16%	(0.14)	
Daily Earnings	87.30	(51.23)	104.27	(50.87)	67.3	(43.90)	
Distance	12.90	(39.15)	15.80	(43.71)	9.49	(32.64)	
Jobs							
Establishment size	1547.75	(7665.13)	2183.74	(9368.63)	797.77	(4847.42)	
Sales per worker in 2013 (€)	165341	(187464.80)	193785	(199633.30)	131798	(165859.70)	
Part-time contract	31%	(0.46)	12%	(0.33)	53%	(0.50)	
Observations	41	1,408	26	52,995	14	48,413	

Women Work Closer To Home

	Distance (Miles)	<5 Miles	5-20 Miles	20-50 Miles	50+ Miles
	(1)	(2)	(3)	(4)	(5)
All	12.9	73.45%	15.51%	6.34%	4.71%
Male	15.8	69.28%	17.23%	7.37%	6.11%
Female	9.5	78.36%	13.48%	5.13%	3.02%
Higher Secondary Degree	22.1	62.50%	19.42%	9.10%	8.98%
Intermediate Secondary Degree	9.9	77.05%	13.97%	5.76%	3.20%
Lower Secondary Degree	9.4	77.78%	13.46%	5.58%	3.18%
Intermediate/Lower Education	8.0	79.04%	14.42%	4.08%	2.48%

Baseline Measure of OOI

 $\blacktriangleright Z_i$

X_i: quadratic in age, female, PCA components for training occupation PCA

- Indicators for part-time/full-time, temp agency job, fixed term contract
- PCA components for occ & industry, indicators for occupational complexity PCA
- Establishment characteristics: size, share of females in management
- PCA based on establishment survey: business performance, investments, working hours, firm training, vocational training, "general"

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ E = 9 Q · 17</p>

Distance: miles between worker's previous residence to establishment (400 districts)

Theory

Empirical Setting and Data

Heterogeneity in Outside Options

Outside Options and Wage Inequality

<□> <@> < E> < E> E|= のQC 17

Distribution of OOI

うりの 三原 くぼうくほうく むう

18

Mass Layoff Exercise

- Involuntary job separations force workers to move to their outside options
- We use mass layoffs to show that the OOI is a meaningful measure of outside options
- We focus on workers who:
 - Separated from their establishment between 1993-2014
 - At an establishments with at least 50 workers
 - At an establishments whose workforce declined 30% over the year
 - With at least 3 years of tenure pre mass-layoff
 - Are below age 55

Mass Layoff Sample

	Main	Sample	Mass Lay	off Sample
-	Mean	SD	Mean	SD
	(1)	(2)	(3)	(4)
Workers				
Age	46.32	(11.64)	38.64	(10.62)
Female	0.46	(0.50)	0.40	(0.49)
German Citizen	0.98	(0.14)	0.98	(0.14)
Higher Secondary Degree	28%	(0.20)	18%	(0.15)
Intermediate Secondary Degree	31%	(0.21)	23%	(0.18)
Lower Secondary Degree	19%	(0.16)	20%	(0.16)
Intermediate/Lower Education	22%	(0.17)	39%	(0.24)
Daily Earnings	87.30	(51.23)	66.35	(85.93)
Workers	411,408		13,	404

Outside Options and Mass Layoffs

• We compare workers within the same mass-layoff event $\psi_{j(i),t}$

▶ With different *OOI*_i

$$\widetilde{w}_{i,t} = \frac{w_{i,t}}{w_{i,0}} = \sum_{\tau=0}^{36} \lambda_{\tau} OOI_i + \psi_{j(i),t} + \mu_t X_{it} + \nu_{i,t},$$

$$e_{i,t} = \sum_{\tau=0}^{36} \lambda_{\tau}^{emp} OOI_i + \psi_{j(i),t}^{emp} + \mu_t^{emp} X_{it} + \nu_{i,t}^{emp},$$
(2)
(3)

Mass Layoffs and Relative Wages

	(1)		(2)		(3)		(4)	
3 Months (λ_3)	0.071	***	0.071	***	0.067	***	0.068	***
	(0.022)		(0.022)		(0.023)		(0.023)	
6 Months (λ_6)	0.089	***	0.089	***	0.083	***	0.083	***
	(0.024)		(0.024)		(0.026)		(0.027)	
12 Months (λ_{12})	0.103	***	0.102	***	0.089	***	0.088	***
	(0.027)		(0.027)		(0.031)		(0.031)	
24 Months (λ_{24})	0.109	***	0.109	***	0.079	**	0.075	**
	(0.034)		(0.034)		(0.036)		(0.036)	
Establishment-Month FE	\checkmark		\checkmark		\checkmark		\checkmark	
Tenure			\checkmark		\checkmark		\checkmark	
Age					\checkmark		\checkmark	
Education					\checkmark		\checkmark	
Gender					\checkmark		\checkmark	
Training Occupation Characteristics							\checkmark	
Observations	547,35	53	547,35	53	547,35	53	547,35	53
Workers	13,40	4	13,40	4	13,40	4	13,40	4

Mass Layoffs and Employment

	(1)		(2)		(3)		(4)	
3 Months (λ_3)	0.016	***	0.016	***	0.013	* *	0.012	**
	-(0.005)		-(0.005)		-(0.006)	-	(0.006)	
6 Months (λ_6)	0.008		0.008		0.004		0.002	
	-(0.006)		-(0.006)		-(0.006)	-	(0.006)	
12 Months (λ_{12})	0.016	**	0.016	**	0.009		0.007	
	-(0.006)		-(0.006)		-(0.007)	-	(0.007)	
24 Months (λ_{24})	0.017	***	0.017	***	0.011		0.007	
	-(0.007)		-(0.007)		-(0.007)	-	(0.007)	
Establishment-Month FE	\checkmark		\checkmark		\checkmark		\checkmark	
Tenure			\checkmark		\checkmark		\checkmark	
Age					\checkmark		\checkmark	
Education					\checkmark		\checkmark	
Gender					\checkmark		\checkmark	
Training Occupation Characteristics							\checkmark	
Observations	547,35	53	547,35	53	547,35	53	547,3	53
Workers	13,40	4	13,40	4	13,40	4	13,40	04

Geographic Variation

24

Distribution of the OOI

			Quantile	s
	Mean	SD	25th 50th	75th
	(1)	(2)	(3) (4)	(5)
All	-4.82	0.97	-5.37 -4.70	-4.14
Male	-4.74	1.00	-5.28 -4.59	-4.05
Female	-4.92	0.91	-5.47 -4.83	-4.27
Citizen	-4.82	0.95	-5.36 -4.70	-4.14
Non-Citizen	-5.10	1.37	-5.52 -4.86	-4.34
Higher Secondary Degree	-4.58	0.92	-5.01 -4.45	-3.99
Intermediate Secondary Degree	-4.76	0.87	-5.32 -4.67	-4.11
Lower Secondary Degree	-4.91	0.95	-5.47 -4.80	-4.22
Intermediate/Lower Education	-5.14	0.93	-5.69 -5.08	-4.46

Heterogeneity in the OOI

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Female	-0.295 ***	-0.268 ***	-0.283 ***	-0.255 ***	-0.201 ***	-0.237 ***	-0.344 ***
	(0.009)	(0.011)	(0.007)	(0.008)	(0.008)	(0.008)	(0.009)
Non-Citizen	-0.262 ***	-0.226 ***	-0.553 ***	-0.498 ***	-0.539 ***	-0.494 ***	-0.675 ***
	(0.036)	(0.032)	(0.030)	(0.026)	(0.022)	(0.020)	(0.025)
Lower-Secondary Certificate	-0.601 ***	-0.535 ***	-0.526 ***	-0.474 ***	-0.504 ***	-0.464 ***	-0.374 ***
	(0.014)	(0.014)	(0.011)	(0.010)	(0.011)	(0.010)	(0.010)
Intermediate	-0.236 ***	-0.211 ***	-0.110 ***	-0.110 ***	-0.129 ***	-0.129 ***	-0.098 ***
	(0.011)	(0.011)	(0.008)	(0.008)	(0.009)	(0.008)	(0.009)
Age Controls	Quadratic	Quadratic	Quadratic	Quadratic	Quadratic	Quadratic	Quadratic
Training Occupation FE		\checkmark		\checkmark		\checkmark	\checkmark
District FE			\checkmark	\checkmark			\checkmark
Establishment FE					\checkmark	\checkmark	
OOI Based on Vacancies							\checkmark
Adjusted R-Squared	0.133	0.253	0.530	0.629	0.573	0.627	0.562
Observations	375,765	375,765	375,765	375,765	375,765	375,765	375,765

Theory

Empirical Setting and Data

Heterogeneity in Outside Options

Outside Options and Wage Inequality

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ < ○
 26

Linking OOI and Wages

 $\log w_i = \alpha OOI_i + \beta X_i + \varepsilon_i$

- 1. Endogeneity: OOI is an equilibrium object, correlated with worker productivity
- 2. Measurement error: OOI is measured with noise

Measure link between outside options and wages using instruments that change workers' option sets

- Ideal instrument holds firm profits constant
- Use a standard shift-share instrument, explore robustness with exporting firms

Shift-Share OOI

Idea: Compare workers in the same industry with outside options in different industries

Specification: Look at change in wages 2004-2014 within industries (*j*)

$$\Delta_{04}^{14} \log w_{i} = \alpha \Delta_{04}^{14} OOI_{i} + \beta \Delta_{04}^{14} X_{i} + Ind_{j(i,2004)} + \upsilon_{i}$$

$$\Delta_{04}^{14} OOI_{i} = \gamma Z_{j(i,2004),r(i,2004)} + \delta \Delta_{04}^{14} X_{i} + Ind_{j(i,2004)} + \epsilon_{i},$$
(4)

where Z_j is the expected change in OOI for individuals in industry j and region r in 2004

ID: exogeneity of shocks

$$E\left[\varepsilon_{i}Z_{j(i,2004),r(i,2004)}|Ind_{j(i)}^{04},\Delta_{04}^{14}X_{i}\right]=0$$

Shift-Share OOI: Instrument Details

1. Calculate the predicted OOI for each individual

$$\widetilde{OOI}_{i,2014} = -\sum_{z_j} \widehat{f_{Z|X}(z_j|x_i)} \left(\frac{\log \widehat{f_{Z|X}(z_j|x_i)}}{\log \widetilde{g}_{14}(z_j)} \right)$$

2. Calculate the predicted change in OOI

$$\Delta_{04}^{14}\widetilde{OOI}_i = \widetilde{OOI}_{i,2014} - OOI_{i,2004}$$

3. Average across individuals in region j and industry r in 2004

$$Z_{j,r} = \frac{1}{|\mathcal{S}(j,r)|} \sum_{i \in \mathcal{S}(j,r)} \Delta_{04}^{14} \widetilde{OOI}_{i}$$

Shift-Share Results

				By Ex	porting Share	of Sales
				More than	Between 1	Less than
		Full Sample		33%	and 33%	1%
	(1)	(2)	(3)	(4)	(5)	(6)
First Stage	0.299 ***	0.276 ***	0.242 ***	0.353 ***	0.204 ***	0.272 ***
	(0.064)	(0.048)	(0.064)	(0.104)	(0.059)	(0.080)
Reduced Form	0.0517 **	0.0504 **	0.038	0.080 ***	0.009	0.031
	(0.021)	(0.021)	(0.024)	(0.026)	(0.026)	(0.023)
2SLS	0.173 ***	0.183 ***	0.156 *	0.227 ***	0.046	0.114
	(0.063)	(0.068)	(0.092)	(0.071)	(0.123)	(0.096)
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Age Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Demographic Controls		\checkmark	\checkmark			
Regional Controls			\checkmark			
F (First Stage)	21.95	32.82	14.5	11.52	12.04	11.56
Number of industry-regions	5510	5510	5510	2195	2525	790
Observations	435,586	435,586	435,586	144,039	147,529	144,018

30

Shift-Share Heterogeneity

	By	Gender		By Education	
			Higher	Intermediate	Lower
	Male	Female	Secondary	Secondary	Secondary
	(1)	(2)	(3)	(4)	(5)
First Stage	0.309 ***	0.266 ***	0.232 ***	0.203 ***	0.321 ***
	(0.080)	(0.050)	(0.079)	(0.053)	(0.049)
Reduced Form	0.0673 ***	0.019	0.031	0.046 **	0.080 ***
	(0.021)	(0.022)	(0.022)	(0.022)	(0.026)
2SLS	0.218 ***	0.071	0.134	0.228 **	0.247 ***
	(0.059)	(0.086)	(0.099)	(0.103)	(0.078)
Industry FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Age Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
F (first stage)	14.77	27.97	8.56	14.89	43.45
Observations	283,550	152,036	96,148	148,136	91,793

Decomposing Wage Gaps

1. Baseline: Raw wage gap

$$\log w_i = \beta_0 X_i + \epsilon_i$$

- Mincer regression of log wages on demographic characteristics: indicators for each education group, a quadratic function of age, gender, citizenship status, part-time indicators
- 2. Wage gap explained by the OOI:

$$\log w_i = \underbrace{\widehat{\alpha}}_{.17} OOI_i + \beta_1 X_i + \nu_i$$

3. Wage gap explained by commuting costs:

$$\log w_i = \underbrace{\hat{\alpha}}_{.17} \left(\text{OOI}_i - \widetilde{OOI}_i \right) + \beta_2 X_i + \epsilon_i$$

32

Note: to account for top-coding, we estimate each equation using a Tobit model

Wage Gaps and Distance

 Assign everyone the "commuting cost" or a 40 year old male citizen with highest level of education

Discussion

Developed a method to estimate workers' outside employment opportunities

- Adapted standard marriage market models for use in the labor market (Becker 1973, Shapley-Shubik 1971)
- Derived a sufficient statistic for outside options: Outside Options Index (OOI)
- Applied this approach to linked employer-employee data from Germany
 - Males, German citizens, urban residents have more options
 - 10% more options yields 1.7% higher income
- Differences in options tend to increase between-group wage inequality: 20% of gender gap

<ロト < 個ト < 臣ト < 臣ト 王目目 のへの 35

Thank You

Appendix

< □ > < 個 > < E > < E > E = < 0 < 0

36

Solution: Equilibrium

Stable equilibrium (core allocation) includes:

1. Allocation of workers and jobs $m: \mathcal{I} \to \mathcal{J}$

2. Transfers w_{ii}

Which satisfies the following conditions:

1. No profitable deviations $\forall i \in \mathcal{I}, \forall j \in \mathcal{J}$:

2. Participation constraint

$$\begin{array}{ll} \forall i \in I & : & \omega_{i,m(i)} \ge u_i \\ \forall j \in J & : & \pi_{m^{-1}(j),j} \ge v_j \end{array}$$

where u_i, v_i are the value of unemployment or vacancy $\mathbb{R}^{\text{eturn}}$

Continuous Logit Assumptions

$$\tau_{ij} = \tau \left(x_i, z_j \right) + \varepsilon_{i, z_j} + \varepsilon_{j, x_i}$$

s.t. $\varepsilon_{i, z_j} \perp \varepsilon_{j, x_i}$
 $\varepsilon_{i, z_j}, \varepsilon_{j, x_i} \sim CL(\alpha)$

Each worker (job) knows about a random subset of the available jobs (workers)

For each of these jobs (workers), the relevant party draws *ϵ* from a Poisson process on Z×ℝ with intensity

 $f(z) dz \times e^{-\varepsilon} d\varepsilon$

 \blacktriangleright The maximum value on each Borel measurable subset is EV_1 with scale lpha

Continuous Logit Choice

 $Q_{z_i|x_i}$ is the measure of x_i times their share that chooses z_j .

$$Q_{z_j|x_i} = f(x_i) f(z_j|x_i)$$

In continuous logit the share to choose z_j is

$$\frac{\exp\omega(x_i, z_j) f(z_j)}{\int_{z'} \exp\omega(x_i, z') f(z') dz'} = \frac{\exp\omega(x_i, z_j) f(z_j)}{\exp E[\omega_i | x_i]}$$

Market clears when

$$Q_{z_j|x_i} = \frac{\exp \omega (x_i, z_j) f(z_j) f(x_i)}{\exp E [\omega_i | x_i]} = \frac{\exp \pi (x_i, z_j) f(z_j) f(x_i)}{\exp E [\pi_j | z_j]} = Q_{x_i | z_j}$$
$$\omega (x_i, z_j) - \pi (x_i, z_j) = E [\omega_i | x_i] - E [\pi_j | z_j]$$

By definition

$$\omega(x_i, z_j) + \pi(x_i, z_j) = \tau(x_i, z_j)$$

And the sum gives the solution

PCA Components for Occupations

	Ν	First Component	Second Component
Hours	11021	Work on Sundays and public holidays	Hours per week like to work
Type of Task	15035	Have responsibility for other people	Cleaning, waste, recycling
Requirements	10904	Face acute pressure and deadlines	Highly specific regulations
Physical	20036	Oil, dirt, grease, grime	Pathogens, bacteria
Mental	17790	Support from colleagues	Often missing information about work

PCA Components from Estab. Survey (Z)

	Ν	First Component	Second Component
Business Performance	8824	Member of chamber of industry	Profit
Investment & Innovation	8824	IT investment	Total investment
Hours	8824	Vacation credit policy	Flexible hours
Vocational Training	8824	Offer apprenticeship	Ability to fill training
General	8824	Family managed	Staff representation

Proof

$$f_{j}^{i} = f(j|i) = f(j|X = x_{i}) =$$

$$= f(j|Z = z_{j}, X = x_{i}) f(Z = z_{j}|X = x_{i}) =$$

$$= f(j|Z = z_{j}) \frac{f(X = x_{i}, Z = z_{j})}{f(X = x_{i})} =$$

$$= \frac{|J|^{-1}}{f(Z = z_{j})} \frac{f(X = x_{i}, Z = z_{j})}{f(X = x_{i})}$$

Mass-Layoffs

• Outcome variable: Daily wage divided by baseline $\frac{w_t}{w_0}$

Month After Separation

43

Mass-Layoffs: Relative Income

Month After Separation

Mass Layoffs - Job Search

Month After Separation

